Predicting Amino Acid Preferences in the Complementarity Determining Regions of an Antibody-Antigen Recognition Interface
No.
1 Yu, C. M. et al. Rationalization and design of the complementarity determining region sequences in an antibody-antigen recognition interface. PLoS One 7, e33340, doi:10.1371/journal.pone.0033340 [doi] PONE-D-11-14795 [pii] (2012).
2 Chen, C. T. et al. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces. PLoS One 7, e37706, doi:10.1371/journal.pone.0037706 [doi] PONE-D-11-25431 [pii] (2012).
3 Tsai, K. C. et al. Prediction of carbohydrate binding sites on protein surfaces with 3-dimensional probability density distributions of interacting atoms. PLoS One 7, e40846, doi:10.1371/journal.pone.0040846 [doi] PONE-D-11-25241 [pii] (2012).
4 Mahalingam, R., Peng, H. P. & Yang, A. S. Prediction of FMN-binding residues with three-dimensional probability distributions of interacting atoms on protein surfaces. J Theor Biol 343, 154-161, doi:10.1016/j.jtbi.2013.10.020 (2014).
5 Mahalingam, R., Peng, H. P. & Yang, A. S. Prediction of fatty acid-binding residues on protein surfaces with three-dimensional probability distributions of interacting atoms. Biophysical chemistry 192c, 10-19, doi:10.1016/j.bpc.2014.05.002 (2014).
6 Peng, H. P., Lee, K. H., Jian, J. W. & Yang, A. S. Origins of specificity and affinity in antibody-protein interactions. Proc Natl Acad Sci U S A 111, E2656-2665, doi:10.1073/pnas.1401131111 (2014).
7 Chen, H. S. et al. Predominant structural configuration of natural antibody repertoires enables potent antibody responses against protein antigens. Scientific reports 5, 12411, doi:10.1038/srep12411 (2015).
8 Tung, C. P. et al. Discovering neutralizing antibodies targeting the stem epitope of H1N1 influenza hemagglutinin with synthetic phage-displayed antibody libraries. Scientific reports 5, 15053, doi:10.1038/srep15053 (2015).
9 Hou, S. C. et al. High throughput cytotoxicity screening of anti-HER2 immunotoxins conjugated with antibody fragments from phage-displayed synthetic antibody libraries. Scientific reports 6, 31878, doi:10.1038/srep31878 (2016).
10 Jian, J. W. et al. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms. PLoS One 11, e0160315, doi:10.1371/journal.pone.0160315 (2016)
11 Kwong, P. D. et al. Antibodyomics: bioinformatics technologies for understanding B-cell immunity to HIV-1. Immunological reviews 275, 108-128, doi:10.1111/imr.12480 (2017)
12 Chen, I. C. et al. High throughput discovery of influenza virus neutralizing antibodies from phage-displayed synthetic antibody libraries. Scientifc reports, 7(1), 14455 (2017)
13 Wang,A. Y. et al. Germline breast cancer susceptibility gene mutations and breast cancer outcomes. BMC CANCER, 18(1), 315-327. (2018)
14 Kuo, W. Y. et al. Noninvasive assessment of characteristics of novel anti-HER2 antibodies by molecular imaging in a human gastric cancer xenograft-bearing mouse model. Scientific reports 8 (1), 13735 (2018)
15 Kuo, W. Y. et al. Antibody-drug conjugates with HER2-targeting antibodies from synthetic antibody libraries are highly potent against HER2 positive human gastric tumor in xenograft models. MAbs. doi: 10.1080/19420862.2018.1541370 (2018)
16 Jian, J. W. et al. Effective binding to protein antigens by antibodies from the antibody libraries designed with enhanced protein recognition propensities, MAbs (under revision)
Yang, An-Suei Laboratory, Genomics Research Center, Academia Sinica. 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan